
Practical Example: NGS – data
handling and single cell differentiation

Ivan G. Costa & Martin Manolov

Institute for Computational Genomics

Joint Research Centre for Computational Biomedicine

RWTH Aachen University, Germany

Contact Information

Martin Manolov

martin.manolov@rwth-aachen.de

Room 3.03

From Sequencing to Alignment

DNA Sequencing

● The problem of converting a DNA molecule to a string
[sequence] of bases (C, A, G, T).

● Many possible sequencing techniques exist:
● Illumina
● PacBio
● Nanopore

Illumina

Lu, Yuan, et al. "Next Generation Sequencing in Aquatic Models." 2016.

FASTA File

● Stores DNA sequences in a text-based file

● Mainly used to store large genomic sequences

● Header (lines that start with '>') + DNA sequence

● Alphabet: A, C, G, T, N

>SEQ_1
GATTTGGGGTTCAAAGCAGTATCGATCAAATAGTAAATCCATTTGTTCAACTCACAGTTT
>SEQ_2
AGCAGTTGGGGTTCATCGAATTTGGGGTTCATCCATTAAAGCAGAATCCATTTGATCAAT

FASTQ File

● Also text-based. Mainly used to store short DNA
sequences (reads) from NGS-based experiments.

● Line 1: Begins with '@' and is followed by a an identifier.
● Line 2: DNA sequence.
● Line 3: Begins with '+' and is optionally followed by the

same sequence identifier (and any description) again.
● Line 4: Quality values for the sequence in Line 2, and must

contain the same number of symbols as the sequence.

@SEQ_ID
GATTTGGGGTTCAAAGCAGTATCGATCAAATAGTAAATCCATTTGTTCAACTCACAGTTT
+
!''*((((***+))%%%++)(%%%%).1***-+*''))**55CCF>>>>>>CCCCCCC65

FASTQ Evaluation – FastQC

● Fastq files can be very big with millions of (long) reads.
Infeasible to investigate.

● Phred-Score hard to read in ASCII form.

● FastQC (usually provided by NGS core facilities)
● Tool to analyse quality of reads from sequencing.
● Indicate problems in library preparation or sequencing

steps.

● Example – good quality sequences
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/good_sequence_sho
rt_fastqc.html

● Example – bad quality sequences
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/bad_sequence_fastq
c.html

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/good_sequence_short_fastqc.html
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/good_sequence_short_fastqc.html
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/bad_sequence_fastqc.html
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/bad_sequence_fastqc.html

FASTQ Evaluation – FastQC

Sequencing quality decreases with size.

Solution: trim ends of reads, if quality is low.

FASTQ Evaluation – FastQC

Read position sequence bias.

Solution: Trim starts of reads.

Exercise Time

● Download data1.zip from the lecture website.

● Use FastQC to analyze the data:
● create new directory “fastqc_results”
● read the documentation of FastQC to understand how to

export the files to the new directory:
● fastqc -h

● What do you see? What is the overall quality? Do we
have any adapters?

● Trim the reads from the identified adapter using
trim_galore (trim_galore –help) in a new folder
“trimmed_results”. Again analyze the fastq. What do you
see? Are the adapters gone?

Exercise Time

● fastqc -o fastqc_results/ ERR522959_1.fastq.gz
ERR522959_2.fastq.gz

● trim_galore –nextera -o trimmed_results/ ERR522959_1.fastq.gz
ERR522959_2.fastq.gz

● fastqc -o trimmed_results/ trimmed_results/ERR522959_1_trimmed.fq.gz
trimmed_results/ERR522959_2_trimmed.fq.gz

Alignment

● Usually very large genomes (with repetitive regions)
and very small reads.

Alignment

● The problem of aligning DNA sequence to a reference
genome.

STAR: Universal RNA-seq aligner.

Source: Dobin et al. (2013), Bioinformatics.

● STAR allows a sequence to be split and aligned to
different exons

SAM File

● Sequence Alignment/Map format.

● Text-based tab-delimited file.

● Header + records (aligned reads)

● Information:
https://samtools.github.io/hts-specs/SAMv1.pdf

header records

SAM Fields

BAM File

● Binary Alignment/Map format – compressed version of SAM.

● Compression: BGZF block compression.

● Efficient random access: UCSC bin/chunk scheme.

● BAI index files.

● More Information:
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2723002/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC186604/

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2723002/

Samtools

● Provides various utilities for manipulating alignments in
the SAM format.

● Tools useful for quality check and bias correction.

● More Information:
Paper: http://www.ncbi.nlm.nih.gov/pubmed/19505943
Website: http://samtools.sourceforge.net/

Exercise Time

● Download data2.zip from the lecture website.

● Use STAR to align the reads to the supplied small
reference genome (smaller_reference.fa) and output sam
file
● FIRST! Index the genome:

STAR --runThreadN 4 --runMode genomeGenerate --genomeDir
output_dir/ --genomeFastaFiles smaller_reference.fa
STAR –help # for manuals

● Convert the SAM file to BAM (samtools view –help)

● Sort and index (samtools sort; samtools index)

IGV

● Tool for visualising sequences, reads and/or variants
● Open IGV. From menu: Genomes → Load genomes from

file. → Navigate to genome fasta file

● File →
Load from File →
Navigate to
indexed Bam file.

Single Cell Analysis

● Extract sequences from a specific cell for the purpose of
discovering differences in gene expression level

● Every sample is prepared by artificially adding a barcode
and (preferably) Unique Molecule Identifier (UMI)
● All molecules from the same batch have the same

barcode
● Every individual molecule has a separate UMI

● Because of sequencing errors, we need to make sure that
we can correct small amount of bases (1-2) and still have
the same barcode – by maximizing the Hamming distance

Demultiplexing

Source: 10x genomics

Demultiplexing

Distinguishing different DNA samples based on added
barcode

Source: Illumina webinar

Hamming Distance

● A measure of similarity between two strings of equal
length

● Measured by the amount substitutions needed to derive
the second string from the first

Hamming Distance - Example

● Designing a set of equidistant barcodes for optimal error
correction is NP-complete problem

Demultiplexing

● Demultiplexing both:
● Barcode
● UMI (Unique Molecule Identifier)

● Usually UMI is added to read of the paired read.

● This results in one Fastq File per barcode

Demultiplexing - Example

● For simplicity a demultiplexing script is provided as
well as sample data - data3.zip. Use it to extract
demultiplexed reads and get familiar with the inputs
and outpus.

mkdir data3/results

./demultiplexing.py -b data3/10cells_barcodes.txt -f
data3/10cells_read1.fastq -r data3/10cells_read2.fastq -o
data3/results/

Expression Matrix

● After performing QC we align the reads and count
UMIs for specific barcodes and positions to create an
Expression Matrix (mxn).

● Columns represent a cell
● Rows represent a gene (transpose used by some

authors)

Seurat

● An R package designed for higher level analysis and
exploration of single-cell RNA-seq data.

● Current version: 3.0.0

● Allows various functions like PCA and clustering and
supports an array of different plotting capabilities.

Seurat – pipeline

Preprocessing and QC

Cell filtering

Normalization

Variability Assessment

Dimension Reduction

Cluster Annotation

Cell Filtering

Feature Selection

Seurat – download data

● Download the seurat_data.tar.gz and extract data:

tar xzvf seurat_data.tar.gz

● open R (or Rstudio) and load the data in a seurat object.

library(Seurat)
library(dplyr)

seuobj.data <- Read10X(data.dir = "filtered_gene_bc_matrices/hg19/")
create a Seurat object
seuobj <- CreateSeuratObject(
 counts = seuobj.data,
 min.cells = 3,
 min.features = 200
)

Seurat – Preprocessing

An object of class Seurat
13714 features across 2700 samples within 1 assay
Active assay: RNA (13714 features)
2 dimensional reductions calculated: pca, tsne

Plot the expression level
VlnPlot(
 object = seuobj,
 features = c("nFeature_RNA", "nCount_RNA"),
 ncol = 2
)

Plot the feature correlation
FeatureScatter(
 object = seuobj,
 feature1 = "nCount_RNA",
 feature2 = "nFeature_RNA"
)

Seurat – Preprocessing

Seurat – Preprocessing

Seurat – pipeline

Preprocessing and QC

Cell Filtering

Normalization

Variability Assessment

Dimension Reduction

Cluster Annotation

Feature Selection

Seurat – Data normalization

Filter cells with outlier number of read counts
seuobj <- subset(
 x = seuobj,
 subset = nFeature_RNA < 2500 & nFeature_RNA > 200
) # Currently a problem in development version. If you need to apply this,
install Seurat from CRAN (install.packages(Seurat))

Perform Log-Normalization with scaling factor 10,000
seuobj <- NormalizeData(
 object = seuobj,
 normalization.method = "LogNormalize",
 scale.factor = 10000
)

Seurat – pipeline

Preprocessing and QC

Feature removal

Normalization

Feature Selection

Dimension Reduction

Cluster Annotation

Cell filteringCell Filtering

Seurat – Identifying Highly

 Features

Identification of highly variable features
seuobj <- FindVariableFeatures(
 object = seuobj,
 mean.function = ExpMean,
 dispersion.function = LogVMR,
 x.low.cutoff = 0.0125,
 x.high.cutoff = 3,
 y.cutoff = 0.5
)

Identify the 10 most highly variable genes
top10 <- head(x = VariableFeatures(object = seuobj), 10)

plot variable features with and without labels
plot1 <- VariableFeaturePlot(object = seuobj)
plot2 <- LabelPoints(plot = plot1, points = top10, repel = TRUE)
CombinePlots(plots = list(plot1, plot2))

Seurat – Identifying Highly Variable Features

Seurat – pipeline

Preprocessing and QC

Feature removal

Normalization

Variability Assessment

Dimension Reduction

Cluster Annotation

Cell filteringCell Filtering

Feature Selection

Seurat – Scale and Dimension Reduction

Scale the data
all.genes <- rownames(x = seuobj)
seuobj <- ScaleData(object = seuobj, features = all.genes)

Perform linear dimensional reduction
seuobj <- RunPCA(object = seuobj, features = VariableFeatures(object = seuobj))
Visualize PCA
DimPlot(object = seuobj, reduction = "pca")
DimHeatmap(object = seuobj, dims = 1:10, cells = 500, balanced = TRUE)
ElbowPlot(object = seuobj)

Seurat – Scale and Dimension Reduction

Seurat – Scale and Dimension Reduction

Seurat – Scale and Dimension Reduction

Seurat – pipeline

Preprocessing and QC

Feature removal

Normalization

Feature Selection

Dimension Reduction

Cluster Annotation

Cell Filtering

Seurat – Cluster Cells

Clustering Cells
seuobj <- FindNeighbors(object = seuobj, dims = 1:10)
seuobj <- FindClusters(object = seuobj, resolution = 0.5)

Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck
##
Number of nodes: 2695
Number of edges: 97555

Running Louvain algorithm...
Maximum modularity in 10 random starts: 0.8746
Number of communities: 9
Elapsed time: 0 seconds

Seurat – Plot

Run TSNE dimension reductions
seuobj <- RunTSNE(object = seuobj, dims.use = 1:8, do.fast = TRUE)
TSNEPlot(object = seuobj)

Seurat – Identify markers for cells

Find markers for specific clusters
cluster1.markers <- FindMarkers(object = seuobj, ident.1 = 0, min.pct = 0.25)
Display first 10 markers found for cluster 1
head(x = cluster1.markers, n = 10)

Find best markers for each cluster in the dataset
seuobj.markers <- FindAllMarkers(object = seuobj, only.pos = TRUE, min.pct
= 0.25, logfc.threshold = 0.25)
Sort by influnce and group by cluster
seuobj.markers %>% group_by(cluster) %>% top_n(n = 2, wt = avg_logFC)

Seurat – Unbiased cluster identification

Identifty top 10 markers for all genes and plot a heatmap
top10 <- seuobj.markers %>% group_by(cluster) %>% top_n(n = 10, wt = avg_logFC)
DoHeatmap(object = seuobj, features = top10$gene) + NoLegend()

Seurat – Expert-based cluster annotation

Using a known marker plot cluster responses
VlnPlot(object = pbmc, features = c("MS4A1", "CD8A"))

Seurat – Expert-based cluster annotation

Show known markers in tSNE plot
FeaturePlot(object = seuobj, features = c("MS4A1", "GNLY", "CD3E", "CD14",
"FCER1A", "FCGR3A", "LYZ", "PPBP", "CD8A"))

Seurat – Expert-based cluster annotation

Using a known marker identify clusters
seuobj.markers["MS4A1",]$cluster

 Markers Cell Type Identified Cluster
IL7R, CCR7 Naive CD4+ T 0

IL7R, S100A4 Memory CD4+ 1

CD14, LYZ CD14+ Mono 2

MS4A1 B 3

CD8A CD8+ T 4

FCGR3A, MS4A7 FCGR3A+ Mono 5

GNLY, NKG7 NK 6

FCER1A, CST3 DC 7

PPBP Mk 8

Seurat – Expert-based cluster annotation

Plot tSNE with new cluster IDs
new.cluster.ids <- c("Naive CD4 T", "Memory CD4 T", "CD14+ Mono", "B",
"CD8 T", "FCGR3A+ Mono", "NK", "DC", "Mk")
names(x = new.cluster.ids) <- levels(x = pbmc)
pbmc <- RenameIdents(object = pbmc, new.cluster.ids)
DimPlot(object = pbmc, reduction = "umap", label = TRUE, pt.size = 0.5) +
NoLegend()

Thank You for the
attention

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55

