Practical Example: NGS – data handling and single cell differentiation

Ivan G. Costa & Martin Manolov

Institute for Computational Genomics

Joint Research Centre for Computational Biomedicine

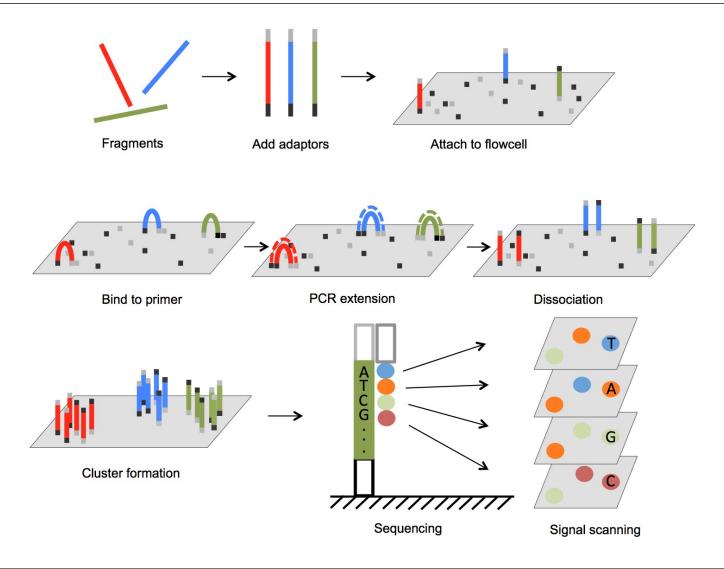
RWTH Aachen University, Germany

Martin Manolov

martin.manolov@rwth-aachen.de

Room 3.03

From Sequencing to Alignment



DNA Sequencing

- The problem of converting a DNA molecule to a string [sequence] of bases (C, A, G, T).
- Many possible sequencing techniques exist:
 - Illumina
 - PacBio
 - Nanopore

Illumina

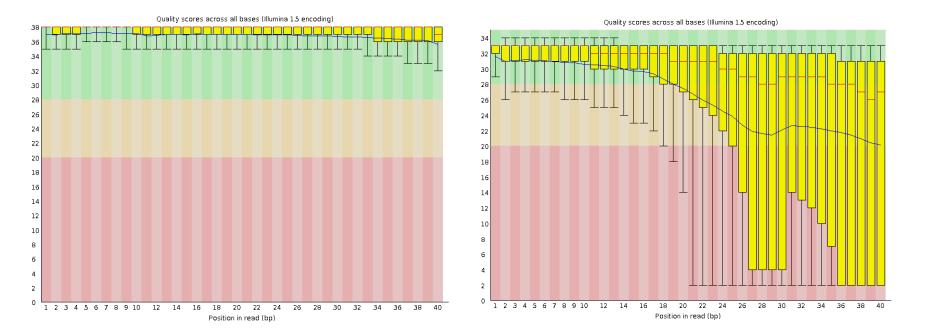
- Stores DNA sequences in a text-based file
- Mainly used to store large genomic sequences
- Header (lines that start with '>') + DNA sequence
- Alphabet: A, C, G, T, N

>SEQ_1 GATTTGGGGTTCAAAGCAGTATCGATCAAATAGTAAATCCATTTGTTCAACTCACAGTTT >SEQ_2 AGCAGTTGGGGTTCATCGAATTTGGGGTTCATCCATTAAAGCAGAATCCATTTGATCAAT

FASTQ File

- Also text-based. Mainly used to store short DNA sequences (reads) from NGS-based experiments.
- Line 1: Begins with '@' and is followed by a an identifier.
- Line 2: DNA sequence.
- Line 3: Begins with '+' and is optionally followed by the same sequence identifier (and any description) again.
- Line 4: Quality values for the sequence in Line 2, and must contain the same number of symbols as the sequence.

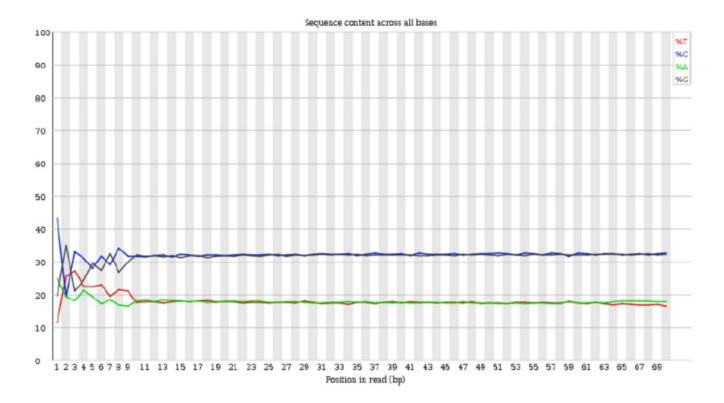
```
@SEQ_ID
GATTTGGGGTTCAAAGCAGTATCGATCAAATAGTAAATCCATTTGTTCAACTCACAGTTT
+
!''*(((((***+))%%%++)(%%%%).1***-+*''))**55CCF>>>>>CCCCCCC65
```



FASTQ Evaluation – FastQC

- Fastq files can be very big with millions of (long) reads. Infeasible to investigate.
- Phred-Score hard to read in ASCII form.
- FastQC (usually provided by NGS core facilities)
 - Tool to analyse quality of reads from sequencing.
 - Indicate problems in library preparation or sequencing steps.
- Example good quality sequences http://www.bioinformatics.babraham.ac.uk/projects/fastqc/good_sequence_sho rt_fastqc.html
- Example bad quality sequences http://www.bioinformatics.babraham.ac.uk/projects/fastqc/bad_sequence_fastq c.html

FASTQ Evaluation – FastQC

Sequencing quality decreases with size.



Solution: trim ends of reads, if quality is low.

FASTQ Evaluation – FastQC

Read position sequence bias.

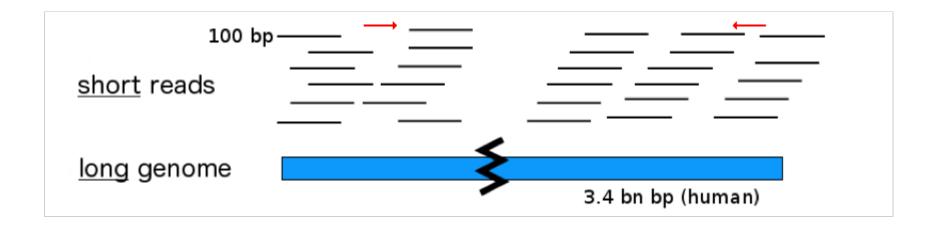
Solution: Trim starts of reads.

Exercise Time

- Download data1.zip from the lecture website.
- Use FastQC to analyze the data:
 - create new directory "fastqc_results"
 - read the documentation of FastQC to understand how to export the files to the new directory:
 - fastqc -h
- What do you see? What is the overall quality? Do we have any adapters?
- Trim the reads from the identified adapter using trim_galore (*trim_galore –help*) in a new folder
 "trimmed_results". Again analyze the fastq. What do you see? Are the adapters gone?

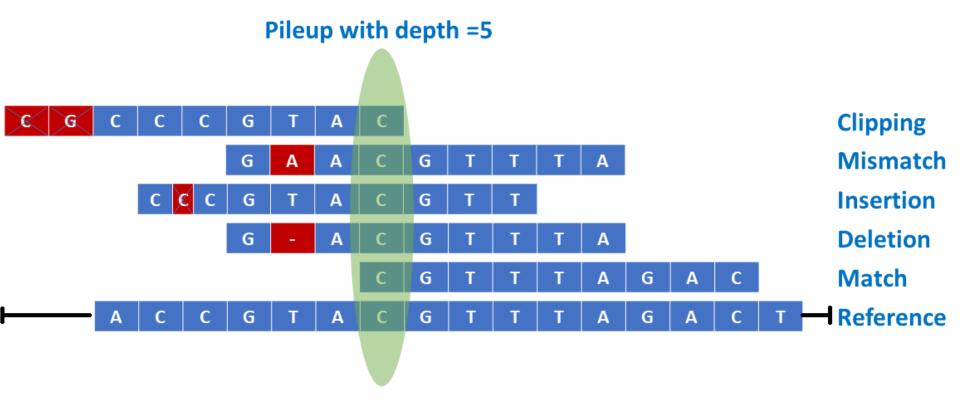
Exercise Time

fastqc -o fastqc_results/ ERR522959_1.fastq.gz ERR522959_2.fastq.gz

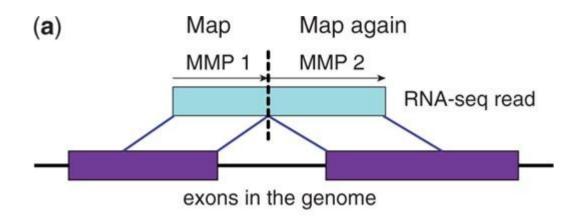

Report			Fri 12 Apr : ERR522959_1.fast						
Summary									
Basic Statistics	Basic Statistics								
0	Measure	Value							
Per base sequence quality	Filename	ERR522959_1.fastq.gz							
Per tile sequence quality	File type	Conventional base calls							
Per sequence quality scores	Encoding	Sanger / Illumina 1.9							
Per base sequence content	Total Sequences	4865943							
0	Sequences flagged as poor quality								
Per sequence GC content	Sequence length	100							
Per base N content	%GC	46							
Sequence Length Distribution									
Sequence Duplication Levels									
	Per base sequence quality								
Overrepresented sequences									
Adapter Content	Quality s	scores across all bases (Sanger	(/ Illumina 1.9 encoding)						
 trim_galore –nextera -o trimmed_results/ ERR522959_1.fastq.gz 									

- trim_galore –nextera -o trimmed_results/ ERR522959_1.fastq.gz
 ERR522959_2.fastq.gz
- fastqc -o trimmed_results/ trimmed_results/ERR522959_1_trimmed.fq.gz trimmed_results/ERR522959_2_trimmed.fq.gz

Alignment


• Usually very large genomes (with repetitive regions) and very small reads.

Alignment


• The problem of aligning DNA sequence to a reference genome.

STAR: Universal RNA-seq aligner.

• STAR allows a sequence to be split and aligned to different exons

Source: Dobin et al. (2013), Bioinformatics.

SAM File

- Sequence Alignment/Map format.
- Text-based tab-delimited file.
- Header + records (aligned reads) header records Information: https://samtools.github.io/hts-specs/SAMv1.pdf QHD VN:1.5 SO:coordinate @SQ SN:ref LN:45 30 8M2I4M1D3M 39 TTAGATAAAGGATACTG r001 99 ref 7 = 37 * r002 9 30 3S6M1P1I4M * O AAAAGATAAGGATA 0 ref 0 * O GCCTAAGCTAA r003 0 ref 9 30 5S6M SA:Z:ref,29,-,6H5M,17,0; * 0 * 0 ref 16 30 6M14N5M O ATAGCTTCAGC r004 0 * * 0 TAGGC r003 2064 ref 29 17 6H5M 0 SA:Z:ref,9,+,5S6M,30,1; * * 7 -39 CAGCGGCAT r001 147 ref 37 30 9M NM:i:1 = *

SAM Fields

Col	Field	l	T	ype	Regexp/	ng	e		Brief description					
1	QNAI	ME	St	ring	[!-?A-~]	[!-?A-~]{1,255}					Query template NAME			
2	FLAG		In	t	$[0,2^{16}-1]$	$[0,2^{16}-1]$						bitwise FLAG		
3	RNA	ИE	\mathbf{St}	ring	* [!-()·	* [!-()+-<>-~][!-~]*						Reference sequence NAME		
4	POS		In	t	$[0, 2^{31}-1]$	$[0, 2^{31}-1]$						1-based leftmost mapping POSition		
5	MAP	Q	In	t	$[0, 2^8 - 1]$	$[0, 2^8 - 1]$					MAPping Quality			
6	CIGA	R	St	ring	\ * ([0-9]	* ([0-9]+[MIDNSHPX=])+					CIGAR string			
$\overline{7}$	RNE	(T	St	ring	* = [!-	* = [!-()+-<>-~][!-~]*					Ref. name of the mate/next read			
8	PNEX	KΤ	In	t	$[0, 2^{31}-1]$	[0,2 ³¹ -1]					Position of the mate/next read			
9	TLEN	J	In	t	[-2 ³¹ +1,2	$[-2^{31}+1,2^{31}-1]$					observed Template LENgth			
10	SEQ		St	ring	* [A-Za	* [A-Za-z=.]+					segment SEQuence			
11	QUAI	_	St	ring	[!-~]+	[!-~]+						ASCII of Phred-scaled base QUALity+33 $$		
@HD VN:1.5 SO:coordinate														
@SQ	SN:ref	f LN	:45											
r001	99	ref	7	30	8M2I4M1D3M	=	37	39	TTAGATA	AAGGATACTG	*			
r002	0	ref	9	30	3S6M1P1I4M	*	0	0	AAAAGAT	TAAGGATA	*			
r003	0	ref	9	30	5S6M	*	0	0	GCCTAAC	GCTAA	*	SA:Z:ref,29,-,6H5M,17,0;		
r004	0	ref	16	30	6M14N5M	*	0	0	ATAGCT	TCAGC	*			
r003	2064	ref	29	17	6H5M	*	0	0	TAGGC		*	SA:Z:ref,9,+,5S6M,30,1;		
r001	147	ref	37	30	ЭМ	=	7	-39	CAGCGGG	CAT	*	NM:i:1		

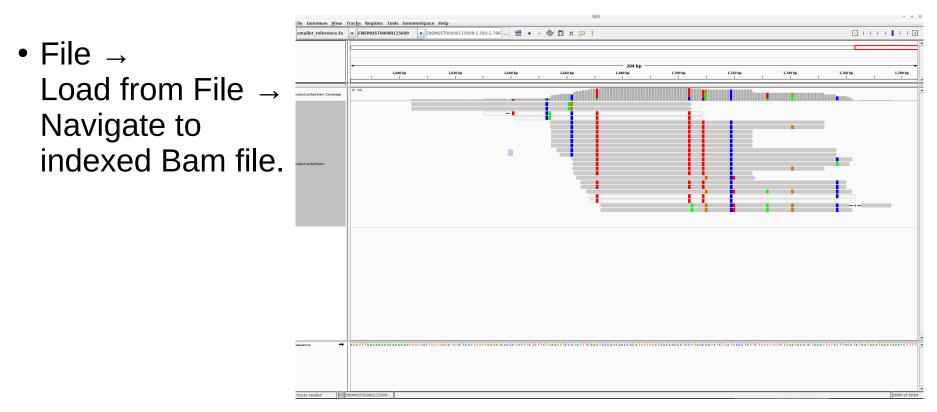
BAM File

- Binary Alignment/Map format compressed version of SAM.
- Compression: BGZF block compression.
- Efficient random access: UCSC bin/chunk scheme.
- BAI index files.
- More Information:

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2723002/ http://www.ncbi.nlm.nih.gov/pmc/articles/PMC186604/

- Provides various utilities for manipulating alignments in the SAM format.
- Tools useful for quality check and bias correction.
- More Information:

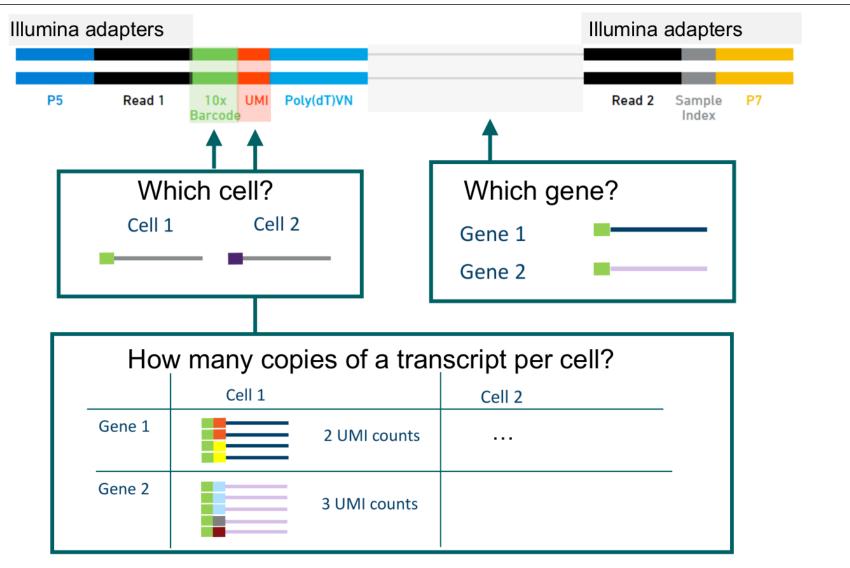
Paper: http://www.ncbi.nlm.nih.gov/pubmed/19505943 Website: http://samtools.sourceforge.net/


Exercise Time

- Download data2.zip from the lecture website.
- Use STAR to align the reads to the supplied small reference genome (smaller_reference.fa) and output sam file
 - **FIRST**! Index the genome: STAR --runThreadN 4 --runMode genomeGenerate --genomeDir output_dir/ --genomeFastaFiles smaller_reference.fa STAR --help # for manuals
- Convert the SAM file to BAM (samtools view –help)
- Sort and index (samtools sort; samtools index)

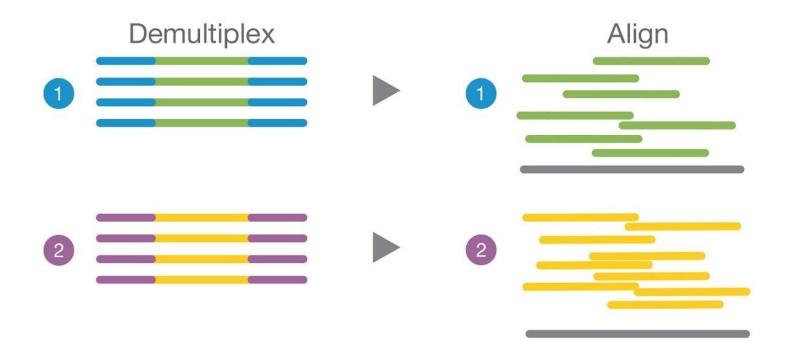
IGV

- Tool for visualising sequences, reads and/or variants
- Open IGV. From menu: Genomes → Load genomes from file. → Navigate to genome fasta file



Single Cell Analysis

- Extract sequences from a specific cell for the purpose of discovering differences in gene expression level
- Every sample is prepared by artificially adding a barcode and (preferably) Unique Molecule Identifier (UMI)
 - All molecules from the same batch have the same barcode
 - Every individual molecule has a separate UMI
- Because of sequencing errors, we need to make sure that we can correct small amount of bases (1-2) and still have the same barcode – by maximizing the Hamming distance


Demultiplexing

Demultiplexing

Distinguishing different DNA samples based on added barcode

Source: Illumina webinar

Hamming Distance

- A measure of similarity between two strings of equal length
- Measured by the amount substitutions needed to derive the second string from the first

Hamming Distance - Example

Α	С	т	G	G	G	Α	С	G	Т	Barcode 1
G	Α	С	т	т	Α	С	G	G	Α	Barcode 2
Α	С	т	G	G	G	Α	С	G	Α	Read 1 – H(1) = 1; H(2) = 9
Т	Α	т	С	Α	G	С	С	G	Α	Read 2 – H(1) = 6; H(7) = 6
Т	Α	С	Т	Т	G	С	G	G	Α	Read 3 – H(1) = 7; H(2) = 2

• Designing a set of equidistant barcodes for optimal error correction is NP-complete problem

Demultiplexing

- Demultiplexing both:
 - Barcode
 - UMI (Unique Molecule Identifier)
- Usually UMI is added to read of the paired read.
- This results in one Fastq File per barcode

Demultiplexing - Example

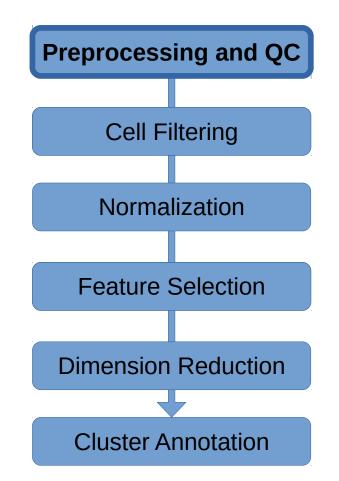
 For simplicity a demultiplexing script is provided as well as sample data - data3.zip. Use it to extract demultiplexed reads and get familiar with the inputs and outpus.

mkdir data3/results

./demultiplexing.py -b data3/10cells_barcodes.txt -f data3/10cells_read1.fastq -r data3/10cells_read2.fastq -o data3/results/

Expression Matrix

- After performing QC we align the reads and count UMIs for specific barcodes and positions to create an Expression Matrix (mxn).
- Columns represent a cell
- Rows represent a gene (transpose used by some authors)



- An R package designed for higher level analysis and exploration of single-cell RNA-seq data.
- Current version: 3.0.0
- Allows various functions like PCA and clustering and supports an array of different plotting capabilities.

Seurat – pipeline

Seurat – download data

• Download the **seurat_data.tar.gz** and extract data:

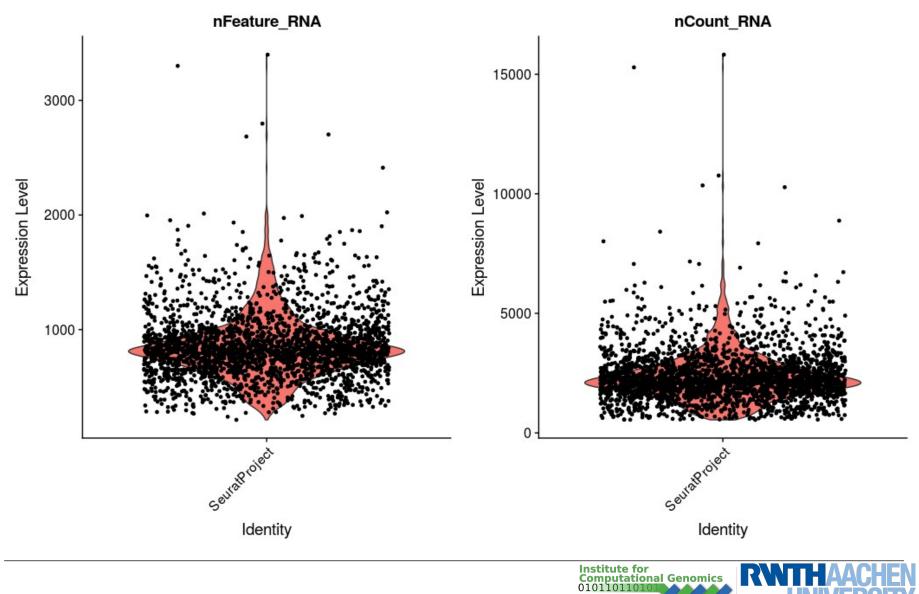
tar xzvf seurat_data.tar.gz

• open R (or Rstudio) and load the data in a seurat object.

library(Seurat) library(dplyr)

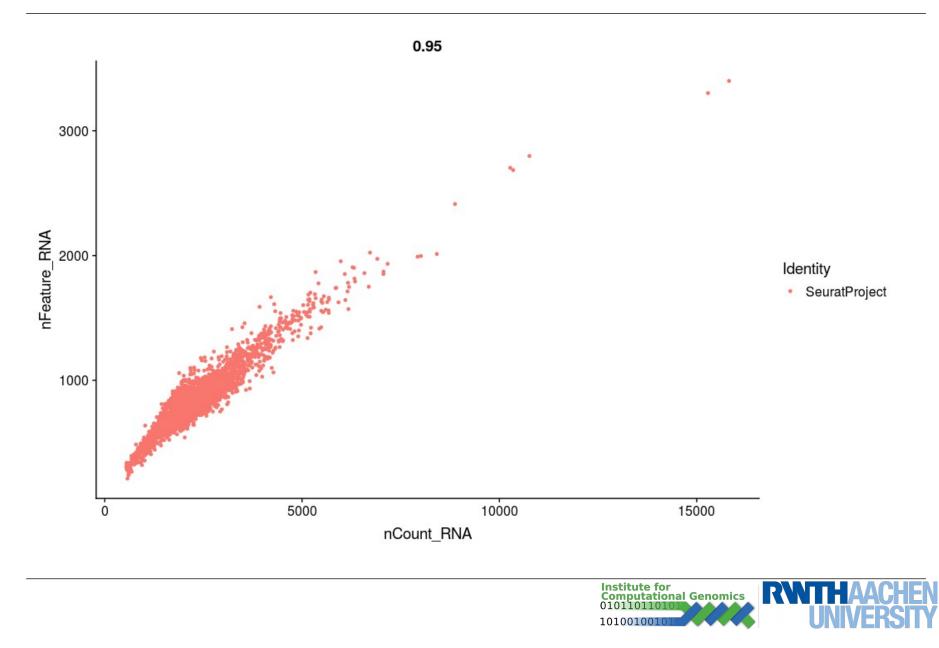
```
seuobj.data <- Read10X(data.dir = "filtered_gene_bc_matrices/hg19/")
# create a Seurat object
seuobj <- CreateSeuratObject(
   counts = seuobj.data,
   min.cells = 3,
   min.features = 200
)</pre>
```


Seurat – Preprocessing

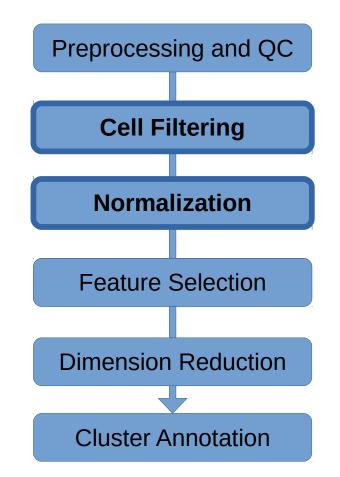

```
## An object of class Seurat
## 13714 features across 2700 samples within 1 assay
## Active assay: RNA (13714 features)
## 2 dimensional reductions calculated: pca, tsne
```

```
# Plot the expression level
VInPlot(
   object = seuobj,
   features = c("nFeature_RNA", "nCount_RNA"),
   ncol = 2
)
```

```
# Plot the feature correlation
FeatureScatter(
    object = seuobj,
    feature1 = "nCount_RNA",
    feature2 = "nFeature_RNA"
)
```



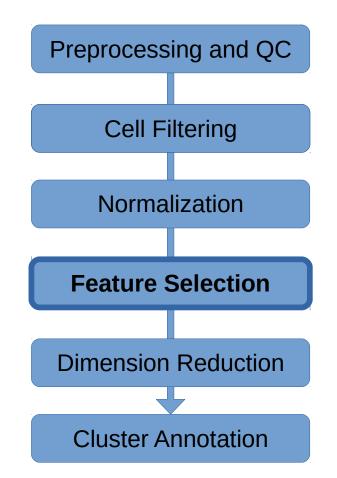
Seurat – Preprocessing



010110110101

Seurat – Preprocessing

Seurat – pipeline

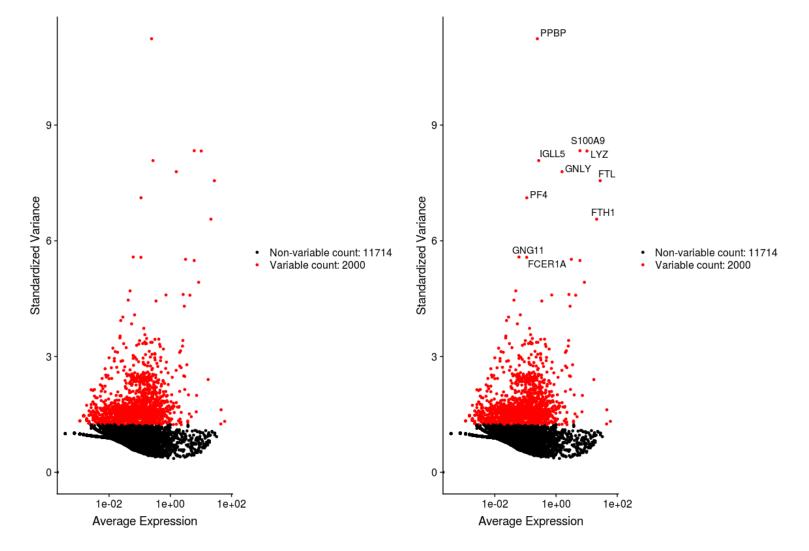



```
# Filter cells with outlier number of read counts
seuobj <- subset(
  x = seuobj,
  subset = nFeature_RNA < 2500 & nFeature_RNA > 200
) # Currently a problem in development version. If you need to apply this,
install Seurat from CRAN (install.packages(Seurat))
```

```
# Perform Log-Normalization with scaling factor 10,000
seuobj <- NormalizeData(
    object = seuobj,
    normalization.method = "LogNormalize",
    scale.factor = 10000
)</pre>
```

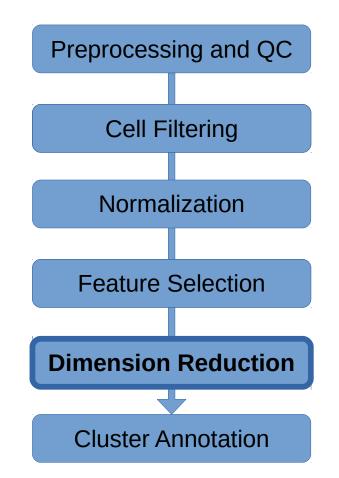

Seurat – pipeline

Features


```
# Identification of highly variable features
seuobj <- FindVariableFeatures(
    object = seuobj,
    mean.function = ExpMean,
    dispersion.function = LogVMR,
    x.low.cutoff = 0.0125,
    x.high.cutoff = 3,
    y.cutoff = 0.5
```

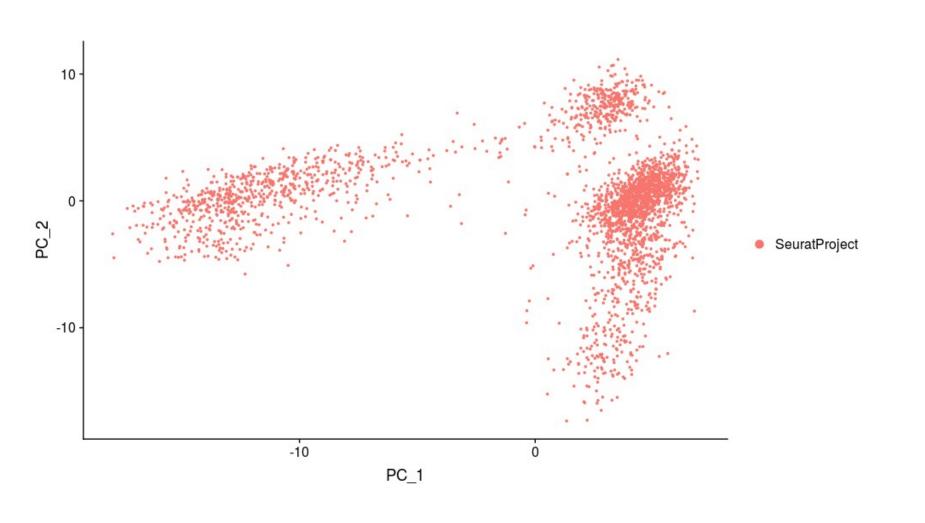
```
# Identify the 10 most highly variable genes
top10 <- head(x = VariableFeatures(object = seuobj), 10)</pre>
```

```
# plot variable features with and without labels
plot1 <- VariableFeaturePlot(object = seuobj)
plot2 <- LabelPoints(plot = plot1, points = top10, repel = TRUE)
CombinePlots(plots = list(plot1, plot2))</pre>
```



Seurat – Identifying Highly Variable Features

Seurat – pipeline




```
# Scale the data
all.genes <- rownames(x = seuobj)
seuobj <- ScaleData(object = seuobj, features = all.genes)</pre>
```

```
# Perform linear dimensional reduction
seuobj <- RunPCA(object = seuobj, features = VariableFeatures(object = seuobj))
# Visualize PCA
DimPlot(object = seuobj, reduction = "pca")
DimHeatmap(object = seuobj, dims = 1:10, cells = 500, balanced = TRUE)
ElbowPlot(object = seuobj)
```

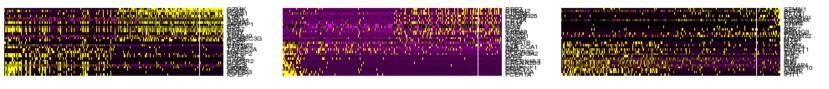

PC_1

PC_4

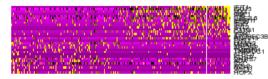
PC_5

PC_2

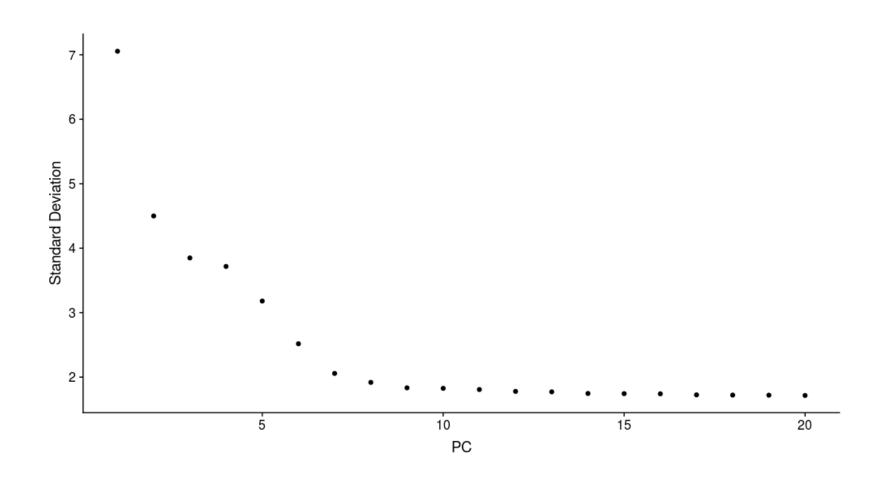
р	\mathbf{r}	۰.	c
г	ັ		C
		_	


PC_3

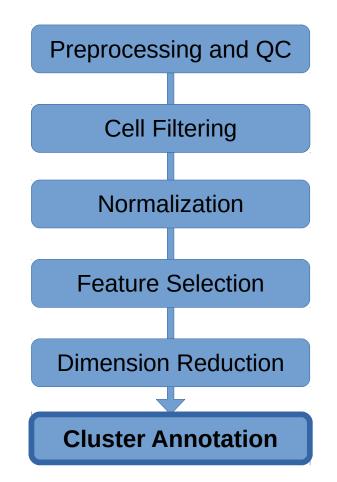
|--|--|--|


PC_7

PC_8


PC_9

PC_10



Seurat – pipeline

Seurat – Cluster Cells

```
# Clustering Cells
seuobj <- FindNeighbors(object = seuobj, dims = 1:10)
seuobj <- FindClusters(object = seuobj, resolution = 0.5)</pre>
```

Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck

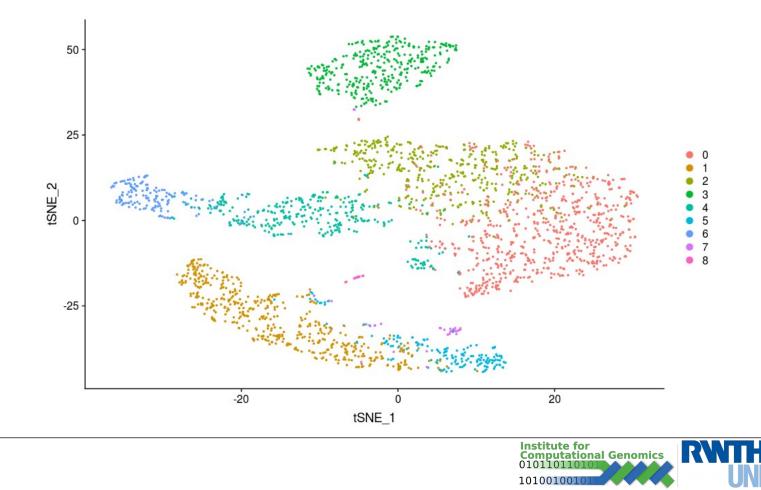
Number of nodes: 2695

Number of edges: 97555

##

Running Louvain algorithm...

Maximum modularity in 10 random starts: 0.8746

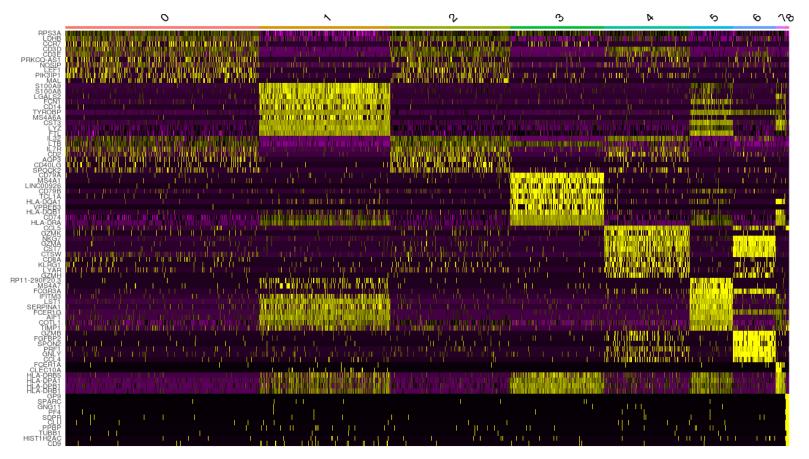

Number of communities: 9

Elapsed time: 0 seconds

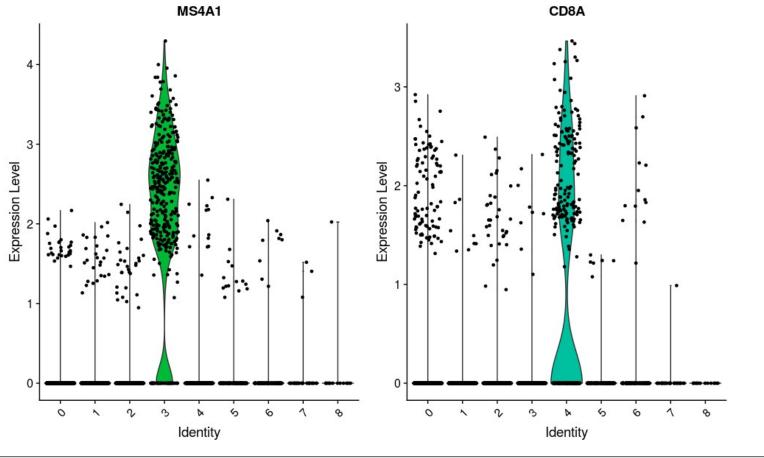
Seurat – Plot

Run TSNE dimension reductions seuobj <- RunTSNE(object = seuobj, dims.use = 1:8, do.fast = TRUE) TSNEPlot(object = seuobj)

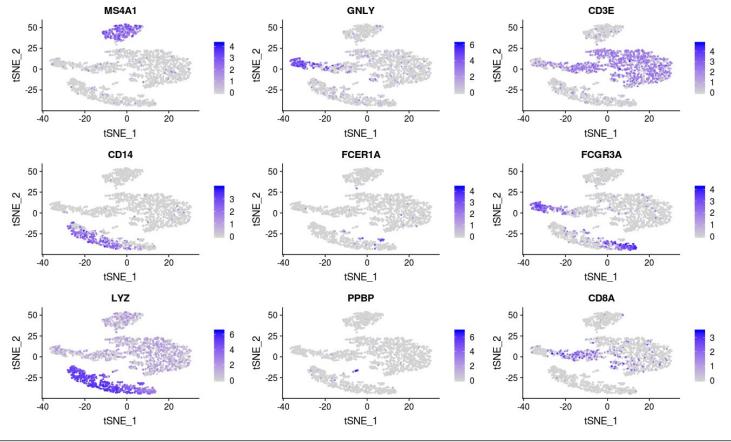
Seurat – Identify markers for cells


Find markers for specific clusters
cluster1.markers <- FindMarkers(object = seuobj, ident.1 = 0, min.pct = 0.25)
Display first 10 markers found for cluster 1
head(x = cluster1.markers, n = 10)</pre>

Find best markers for each cluster in the dataset seuobj.markers <- FindAllMarkers(object = seuobj, only.pos = TRUE, min.pct = 0.25, logfc.threshold = 0.25) # Sort by influnce and group by cluster seuobj.markers %>% group_by(cluster) %>% top_n(n = 2, wt = avg_logFC)

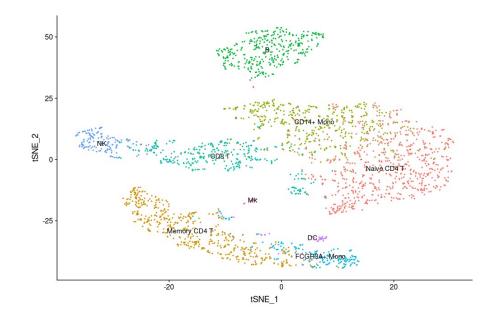

Seurat – Unbiased cluster identification

Identifty top 10 markers for all genes and plot a heatmap top10 <- seuobj.markers %>% group_by(cluster) %>% top_n(n = 10, wt = avg_logFC) DoHeatmap(object = seuobj, features = top10\$gene) + NoLegend()



Using a known marker plot cluster responses
VInPlot(object = pbmc, features = c("MS4A1", "CD8A"))

Show known markers in tSNE plot FeaturePlot(object = seuobj, features = c("MS4A1", "GNLY", "CD3E", "CD14", "FCER1A", "FCGR3A", "LYZ", "PPBP", "CD8A"))



Using a known marker identify clusters seuobj.markers["MS4A1",]\$cluster

Markers	Cell Type	Identified Cluster
IL7R, CCR7	Naive CD4+ T	0
IL7R, S100A4	Memory CD4+	1
CD14, LYZ	CD14+ Mono	2
MS4A1	В	3
CD8A	CD8+ T	4
FCGR3A, MS4A7	FCGR3A+ Mono	5
GNLY, NKG7	NK	6
FCER1A, CST3	DC	7
PPBP	Mk	8


```
# Plot tSNE with new cluster IDs
new.cluster.ids <- c("Naive CD4 T", "Memory CD4 T", "CD14+ Mono", "B",
"CD8 T", "FCGR3A+ Mono", "NK", "DC", "Mk")
names(x = new.cluster.ids) <- levels(x = pbmc)
pbmc <- RenameIdents(object = pbmc, new.cluster.ids)
DimPlot(object = pbmc, reduction = "umap", label = TRUE, pt.size = 0.5) +
NoLegend()
```


Thank You for the attention

