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From Sequencing to Alignment



DNA Sequencing

● The problem of converting a DNA molecule to a string 
[sequence] of bases (C, A, G, T). 

● Many possible sequencing techniques exist:
● Illumina
● PacBio
● Nanopore



Illumina

Lu, Yuan, et al. "Next Generation Sequencing in Aquatic Models."  2016.



FASTA File

● Stores DNA sequences in a text-based file

● Mainly used to store large genomic sequences

● Header (lines that start with '>') + DNA sequence

● Alphabet: A, C, G, T, N

>SEQ_1
GATTTGGGGTTCAAAGCAGTATCGATCAAATAGTAAATCCATTTGTTCAACTCACAGTTT
>SEQ_2
AGCAGTTGGGGTTCATCGAATTTGGGGTTCATCCATTAAAGCAGAATCCATTTGATCAAT



FASTQ File

● Also text-based. Mainly used to store short DNA 
sequences (reads) from NGS-based experiments.

● Line 1: Begins with '@' and is followed by a an identifier.
● Line 2: DNA sequence.
● Line 3: Begins with '+'  and is optionally followed by the 

same sequence identifier (and any description) again.
● Line 4: Quality values for the sequence in Line 2, and must 

contain the same number of symbols as the sequence.

@SEQ_ID
GATTTGGGGTTCAAAGCAGTATCGATCAAATAGTAAATCCATTTGTTCAACTCACAGTTT
+
!''*((((***+))%%%++)(%%%%).1***-+*''))**55CCF>>>>>>CCCCCCC65



FASTQ Evaluation – FastQC

● Fastq files can be very big with millions of (long) reads. 
Infeasible to investigate.

● Phred-Score hard to read in ASCII form.

● FastQC (usually provided by NGS core facilities)
● Tool to analyse quality of reads from sequencing.
● Indicate problems in library preparation or sequencing 

steps.

● Example – good quality sequences
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/good_sequence_sho
rt_fastqc.html

● Example – bad quality sequences
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/bad_sequence_fastq
c.html

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/good_sequence_short_fastqc.html
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/good_sequence_short_fastqc.html
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/bad_sequence_fastqc.html
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/bad_sequence_fastqc.html


FASTQ Evaluation – FastQC

Sequencing quality decreases with size.

Solution: trim ends of reads, if quality is low.



FASTQ Evaluation – FastQC

Read position sequence bias.

Solution: Trim starts of reads.



Exercise Time

● Download data1.zip from the lecture website.

● Use FastQC to analyze the data:
● create new directory “fastqc_results”
● read the documentation of FastQC to understand how to 

export the files to the new directory:
● fastqc -h

● What do you see? What is the overall quality? Do we 
have any adapters?

● Trim the reads from the identified adapter using 
trim_galore (trim_galore –help) in a new folder 
“trimmed_results”. Again analyze the fastq. What do you 
see? Are the adapters gone?



Exercise Time

● fastqc -o fastqc_results/ ERR522959_1.fastq.gz 
ERR522959_2.fastq.gz

● trim_galore –nextera -o trimmed_results/  ERR522959_1.fastq.gz 
ERR522959_2.fastq.gz

● fastqc -o trimmed_results/ trimmed_results/ERR522959_1_trimmed.fq.gz 
trimmed_results/ERR522959_2_trimmed.fq.gz



Alignment

● Usually very large genomes (with repetitive regions) 
and very small reads.



Alignment

● The problem of aligning DNA sequence to a reference 
genome. 



STAR: Universal RNA-seq aligner.

Source: Dobin et al. (2013), Bioinformatics. 

● STAR allows a sequence to be split and aligned to 
different exons



SAM File

● Sequence Alignment/Map format.

● Text-based tab-delimited file.

● Header + records (aligned reads)

● Information:
https://samtools.github.io/hts-specs/SAMv1.pdf 

header records



SAM Fields



BAM File

● Binary Alignment/Map format – compressed version of SAM.

● Compression: BGZF block compression.

● Efficient random access: UCSC bin/chunk scheme.

● BAI index files.

● More Information:
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2723002/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC186604/ 

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2723002/


Samtools

● Provides various utilities for manipulating alignments in 
the SAM format.

● Tools useful for quality check and bias correction.

● More Information:
Paper: http://www.ncbi.nlm.nih.gov/pubmed/19505943
Website: http://samtools.sourceforge.net/



Exercise Time

● Download data2.zip from the lecture website.

● Use STAR to align the reads to the supplied small 
reference genome (smaller_reference.fa) and output sam 
file
● FIRST! Index the genome:

STAR --runThreadN 4 --runMode genomeGenerate --genomeDir 
output_dir/ --genomeFastaFiles smaller_reference.fa
STAR –help # for manuals

● Convert the SAM file to BAM (samtools view –help)

● Sort and index (samtools sort; samtools index)



IGV

● Tool for visualising sequences, reads and/or variants
● Open IGV. From menu: Genomes → Load genomes from 

file. → Navigate to genome fasta file

● File → 
Load from File → 
Navigate to 
indexed Bam file.



Single Cell Analysis

● Extract sequences from a specific cell for the purpose of 
discovering differences in gene expression level

● Every sample is prepared by artificially adding a barcode 
and (preferably) Unique Molecule Identifier (UMI)
● All molecules from the same batch have the same 

barcode
● Every individual molecule has a separate UMI

● Because of sequencing errors, we need to make sure that 
we can correct small amount of bases (1-2) and still have 
the same barcode – by maximizing the Hamming distance



Demultiplexing

Source: 10x genomics



Demultiplexing

Distinguishing different DNA samples based on added 
barcode

Source: Illumina webinar



Hamming Distance

● A measure of similarity between two strings of equal 
length

● Measured by the amount substitutions needed to derive 
the second string from the first



Hamming Distance - Example

● Designing a set of equidistant barcodes for optimal error 
correction is NP-complete problem



Demultiplexing

● Demultiplexing both:
● Barcode
● UMI (Unique Molecule Identifier)

● Usually UMI is added to read of the paired read.

● This results in one Fastq File per barcode



Demultiplexing - Example

● For simplicity a demultiplexing script is provided as 
well as sample data - data3.zip. Use it to extract 
demultiplexed reads and get familiar with the inputs 
and outpus.

mkdir data3/results

./demultiplexing.py -b data3/10cells_barcodes.txt -f 
data3/10cells_read1.fastq -r data3/10cells_read2.fastq -o 
data3/results/



Expression Matrix

● After performing QC we align the reads and count 
UMIs for specific barcodes and positions to create an 
Expression Matrix (mxn).

● Columns represent a cell
● Rows represent a gene (transpose used by some 

authors)



Seurat

● An R package designed for higher level analysis and 
exploration of single-cell RNA-seq data. 

● Current version: 3.0.0

● Allows various functions like PCA and clustering and 
supports an array of different plotting capabilities. 



Seurat – pipeline

Preprocessing and QC

Cell filtering

Normalization

Variability Assessment

Dimension Reduction

Cluster Annotation

Cell Filtering

Feature Selection



Seurat – download data

● Download the seurat_data.tar.gz and extract data:

tar xzvf seurat_data.tar.gz

● open R  (or Rstudio) and load the data in a seurat object.

library(Seurat)
library(dplyr)

seuobj.data <- Read10X(data.dir = "filtered_gene_bc_matrices/hg19/")
# create a Seurat object
seuobj <- CreateSeuratObject(
  counts = seuobj.data,
  min.cells = 3, 
  min.features = 200
) 



Seurat – Preprocessing

## An object of class Seurat 
## 13714 features across 2700 samples within 1 assay 
## Active assay: RNA (13714 features) 
## 2 dimensional reductions calculated: pca, tsne

# Plot  the expression level
VlnPlot(
  object = seuobj, 
  features = c("nFeature_RNA", "nCount_RNA"),
  ncol = 2
)

# Plot the feature correlation
FeatureScatter(
  object = seuobj, 
  feature1 = "nCount_RNA", 
  feature2 = "nFeature_RNA"
)



Seurat – Preprocessing



Seurat – Preprocessing



Seurat – pipeline

Preprocessing and QC

Cell Filtering

Normalization

Variability Assessment

Dimension Reduction

Cluster Annotation

Feature Selection



Seurat – Data normalization

# Filter cells with outlier number of read counts
seuobj <- subset(
  x = seuobj, 
  subset = nFeature_RNA < 2500 & nFeature_RNA > 200
) # Currently a problem in development version. If you need to apply this, 
install Seurat from CRAN (install.packages(Seurat))

# Perform Log-Normalization with scaling factor 10,000
seuobj <- NormalizeData(
  object = seuobj, 
  normalization.method = "LogNormalize", 
  scale.factor = 10000
)



Seurat – pipeline

Preprocessing and QC

Feature removal

Normalization

Feature Selection

Dimension Reduction

Cluster Annotation

Cell filteringCell Filtering



Seurat – Identifying Highly 

 Features

# Identification of highly variable features
seuobj <- FindVariableFeatures(
  object = seuobj,
  mean.function = ExpMean, 
  dispersion.function = LogVMR, 
  x.low.cutoff = 0.0125, 
  x.high.cutoff = 3, 
  y.cutoff = 0.5
)

# Identify the 10 most highly variable genes
top10 <- head(x = VariableFeatures(object = seuobj), 10)

# plot variable features with and without labels
plot1 <- VariableFeaturePlot(object = seuobj)
plot2 <- LabelPoints(plot = plot1, points = top10, repel = TRUE)
CombinePlots(plots = list(plot1, plot2))



Seurat – Identifying Highly Variable Features



Seurat – pipeline

Preprocessing and QC

Feature removal

Normalization

Variability Assessment

Dimension Reduction

Cluster Annotation

Cell filteringCell Filtering

Feature Selection



Seurat – Scale and Dimension Reduction

# Scale the data
all.genes <- rownames(x = seuobj)
seuobj <- ScaleData(object = seuobj, features = all.genes)

# Perform linear dimensional reduction
seuobj <- RunPCA(object = seuobj, features = VariableFeatures(object = seuobj))
# Visualize PCA
DimPlot(object = seuobj, reduction = "pca")
DimHeatmap(object = seuobj, dims = 1:10, cells = 500, balanced = TRUE)
ElbowPlot(object = seuobj)



Seurat – Scale and Dimension Reduction



Seurat – Scale and Dimension Reduction



Seurat – Scale and Dimension Reduction



Seurat – pipeline

Preprocessing and QC

Feature removal

Normalization

Feature Selection

Dimension Reduction

Cluster Annotation

Cell Filtering



Seurat – Cluster Cells

# Clustering Cells
seuobj <- FindNeighbors(object = seuobj, dims = 1:10)
seuobj <- FindClusters(object = seuobj, resolution = 0.5)

## Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck
##
## Number of nodes: 2695
## Number of edges: 97555
## 
## Running Louvain algorithm...
## Maximum modularity in 10 random starts: 0.8746
## Number of communities: 9
## Elapsed time: 0 seconds



Seurat – Plot

# Run TSNE dimension reductions
seuobj <- RunTSNE( object = seuobj, dims.use = 1:8, do.fast = TRUE)
TSNEPlot(object = seuobj)



Seurat – Identify markers for cells

# Find markers for specific clusters
cluster1.markers <- FindMarkers(object = seuobj, ident.1 = 0, min.pct = 0.25)
# Display first 10 markers found for cluster 1
head(x = cluster1.markers, n = 10)

# Find best markers for each cluster in the dataset 
seuobj.markers <- FindAllMarkers(object = seuobj, only.pos = TRUE, min.pct 
= 0.25, logfc.threshold = 0.25)
# Sort by influnce and group by cluster
seuobj.markers %>% group_by(cluster) %>% top_n(n = 2, wt = avg_logFC)



Seurat – Unbiased cluster identification

# Identifty top 10 markers for all genes and plot a heatmap
top10 <- seuobj.markers %>% group_by(cluster) %>% top_n(n = 10, wt = avg_logFC)
DoHeatmap(object = seuobj, features = top10$gene) + NoLegend()

 



Seurat – Expert-based cluster annotation

# Using a known marker plot cluster responses
VlnPlot(object = pbmc, features = c("MS4A1", "CD8A"))
 



Seurat – Expert-based cluster annotation

# Show known markers in tSNE plot
FeaturePlot(object = seuobj, features = c("MS4A1", "GNLY", "CD3E", "CD14", 
"FCER1A", "FCGR3A", "LYZ", "PPBP", "CD8A"))

 



Seurat – Expert-based cluster annotation

# Using a known marker identify clusters
seuobj.markers["MS4A1",]$cluster

 Markers Cell Type Identified Cluster
IL7R, CCR7 Naive CD4+ T 0

IL7R, S100A4 Memory CD4+ 1

CD14, LYZ CD14+ Mono 2

MS4A1 B 3

CD8A CD8+ T 4

FCGR3A, MS4A7 FCGR3A+ Mono 5

GNLY, NKG7 NK 6

FCER1A, CST3 DC 7

PPBP Mk 8



Seurat – Expert-based cluster annotation

# Plot tSNE with new cluster IDs
new.cluster.ids <- c("Naive CD4 T", "Memory CD4 T", "CD14+ Mono", "B", 
"CD8 T", "FCGR3A+ Mono",  "NK", "DC", "Mk")
names(x = new.cluster.ids) <- levels(x = pbmc)
pbmc <- RenameIdents(object = pbmc, new.cluster.ids)
DimPlot(object = pbmc, reduction = "umap", label = TRUE, pt.size = 0.5) + 
NoLegend()

 



Thank You for the 
attention
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