
Introduction to Programming in R

Ivan G. Costa & Tiago Maie
Institute for Computational Genomics
Joint Research Centre for Computational Biomedicine
RWTH Aachen University, Germany

Organization

Slides and exercises are available online:
https://www.costalab.org/bioinformatics-in-r-2023/

Daily Schedule:
 9:30 - 12:00 - Theory and practices
13:00 - 17:00 - Mandatory and optional exercises available on
webpage

Important: M.Sc. and B.Sc. students need to send scripts with
solutions for all mandatory exercises by the end of the day to
courses@costalab.org

Programming, Language & Algorithms

What is an algorithm?
- finite set of well defined and unambiguous

commands to solve a task.

Programming language
- vocabulary and set of instructions to

command a computer

Algorithm Example - “Cake baking”

■ Prepare a cake pan by spraying with baking spray
or buttering and lightly flouring. Next, combine
flour, baking powder, baking soda, and salt in a
large bowl and set the mix aside. Add 3 eggs, one
at a time, and mix just until combined. Add flour
mixture and buttermilk, alternately, beginning and
ending with flour. Preheat oven to 200 C. Pour the
dough in a pan and bake it for 25-30 minutes until
edges turn loose from pan and toothpick inserted
into middle of cake comes out clean. Remove
from the oven and allow to cool for about 10
minutes.

Algorithm Analysis

Task - bake a cake
Language - English

Algorithm Analysis

Task - bake a cake
Language - English
Exact - ???
Well defined - ???

Algorithm Analysis

Task - bake a cake
Language - English
Exact - ???
Well defined - ???

Language & Algorithms

Computer Language
- well defined commands.
- tests to decide the next steps (if-else command)
- tests for repeating commands until a condition

is satisfied (while or repeat)

My first algorithm- “Cake baking”
1. If baking spray is available then

prepare cake pan by spraying
else
 prepare pan by buttering and lightly flouring.

2. While mixture is not creamy
1. Combine flour, baking powder, baking soda, and salt in a large bowl

3. Repeat 3 times
1. Add an egg
2. While mixture not homogeneous

1. Mix dough.
4. Pour the dough in a pan.
5. Turn oven on.
6. Wait until temperature is 200 C.
7. Put pan into oven
8. While “not” edges turn loose from pan or 30 minutes have passed.

1. Wait 1 minute.
9. Remove from the oven
10. Wait for 10 minutes.

Algorithms

1. Exercise:
1. Describe how to change a tire using “if” and “else”

and while.

Equipment:
- jack, bolts, tire, wrench

R Language

http://www.r-project.org/

• Script based Programming language
• Focus of statistical data analysis
• Open source
• Contributing packages

– Bioconductor (bioinformatics functions)
– ggplot2 (plotting functions)
– …

RStudio - Getting Started

• Install RStudio
https://www.rstudio.com

• Run RStudio

Computer Architecture

Memory
(RAM)

Central
Processing

Unity
Input/Output

Secondary
Storage

- Central Processing Unity (CPU)
- execute mathematical operations

- Memory (RAM)
- stores (limited) data for CPU (4-32 Gigabytes)
- fast access but not permanent

- Permanent Storage
- Slow access / large capacity (1.000 Gigabytes)
- Permanent storage of files

- Input/output
- monitor/keyboard/network card

Memory (RAM)

- A computer memory is like a large cabinet
- Each drawer can be used to keep information

- i.e. names, telephones
- Each drawer holds a particular type of information

- i.e. strings, numbers
- Computer knows the location of a particular drawer

Variables

- Each drawer is called a
variable (and we can
give it a name)

Variables

- Each drawer has a type

- Each drawer is called a
variable (and we can
give it a name)

Variables

- Each drawer has a type

- Each drawer is called a
variable (and we can
give it a name)

Variables

- Each drawer has a type
- In R, we have the following types:

- numeric: no_students = 14
-

- Each drawer is called a
variable (and we can
give it a name)

no_students
14

Variables

- Each drawer has a type
- In R, we have the following types:

- numeric: no_students = 14
- character: course_name = “Bioinformatics in R”

- Each drawer is called a
variable (and we can
give it a name)

no_students course_name
“Bioinformatics in R”14

Variables

- Each drawer has a type
- In R, we have the following types:

- numeric: no_students = 14
- character: course_name = “Bioinformatics in R”
- boolean: graduate_level = TRUE

- Each drawer is called a
variable (and we can
give it a name)

no_students course_name
“Bioinformatics in R”14

Variables

- Each drawer has a type
- In R, we have the following types:

- numeric: no_students = 14
- character: course_name = “Bioinformatics in R”
- boolean: graduate_level = TRUE
- vectors: (combination of several variables of same

type): instructors = c(“Ivan”,”Tiago”,”Johannes”)
- Matrices: …

- Each drawer is called a
variable (and we can
give it a name)

no_students course_name
“Bioinformatics in R”14

RStudio & Memory

R console: local to provide commands!

Memory

Graphs (not now)

Variables and Data Types
Single data can be stored in variables
- Data Types: “numeric”, ”character”, “logical”, …

x = 3; <enter>
x; <enter>

R console

“x = 3;” means store the number
“3” at a variable named “x”

Variables and Data Types
Single data can be stored in variables
- Data Types: “numeric”, ”character”, “logical”, …
R console

“x = 3;” means store the number
“3” at a variable named “x”

Memory

Console

x = 3; <enter>
x; <enter>

R Console

>x = 3;
>x;
[1] 3
>class(x);
“numeric”

R console
“>” indicates
the console is
waiting for a
command

Output of the
command (no “>”)

We will omit the
<enter> from
now on.

Variables and Data Types
Single data can be stored in variables
- Data Types: “numeric”, ”character”, “logical”, …

> x = 3
> x
[1] 3
> class(x)
“numeric”
> y ="Bioinformatics"
> y
"Bioinformatics"

R console
> class(y)
“character”
> z = TRUE
> z
TRUE
> class(z)
“logical”

Variables and Operations

> x = 3
> y = 4
> x + y
[1] 7
> x*y
[1] 12
> x/y
[1] 0.75

R console

We can apply arithmetic functions to variables

Variables and Operations

> z = x + y
> z
[1] 7
> z = z + 2
> z
[1] 9

We can apply arithmetic functions to variables

> x = 3
> y = 4
> x + y
[1] 7
> x*y
[1] 12
> x/y
[1] 0.75

R console

Variables and Operations

We can apply logical functions to variables
 & (and) and | (or)

> x = 3
> y = 4
> x > y
[1] FALSE
> z = TRUE
> z & (x > y)
[1] FALSE
> z | (x > y)
[1] TRUE

R console

Overview of RStudio

Intro to RStudio
• RStudio is not R itself, but an integrated
development environment (IDE).

• It offers several
panels for different
purposes, such as
console, help
message, plots,
history, scripts…
etc.

https://www.rstudio.com/products/rstudio/?wvideo=520zbd3tij

RStudio - Getting Started

• Install RStudio
https://www.rstudio.com

• Run RStudio

RStudio - Organisation

Console

Scripts Variables
loaded

Project
folder

RStudio - Configure Project Directory

We need to configure
the project directory:

RStudio - Configure Project Directory

We need to configure
the project directory:

1 - navigate until folder
with course files

RStudio - Configure Project Directory

We need to configure
the project directory:

1 - navigate until folder
with course files

2 - select the "More"
option and "Set as
Working Directory"

RStudio - Configure Project Directory

We need to configure
the project directory:

1 - navigate until folder
with course files

2 - select the "More"
option and "Set as
Working Directory"

Now R Studio knows where to find files !

Exercise 1

- Use arithmetic operations to perform the following
calculations
- 1 plus 3
- 3 minus 1
- 2 multiplied by 2
- 4 divided by 2
- 3 to the power of 2

- Repeat the exercise but this time "save" the results of
the operations (using variables)

Exercise 2

- Use variables to store the amount of fruits in a shop.
We have 5 green apples, 4 red apples, 10 bananas
and 4 melons.

- Write a code using variables to answer the following
questions:
- How many fruits are there is total?
- How many apples?

Exercise 3

- An apple costs 0.5 cents, a banana 1.0 euro, a melon
3 euros (use variables to store these!).
- How much does it cost to buy all the apples in the

shop?
- How much does it cost to buy all the fruits in the

shop?

Exercise 4

- Use logical variables to answer the following
questions.
- Is buying all bananas cheaper than buying all

apples?
- You have 20 euros. Can you buy all apples?

Complex Data Structures

• Vector – variable containing a array of items of
the same type

• Lists - a vector where items can have distinct
types (next class!)

• Matrix – two dimensional vector with items of
the same type

• Data Frame – complex data structure for two
dimensional data where columns can be of
distinct type (as an excel sheet) (next class!)

Complex Data Structures

Vector
• Creating, accessing and updating vector
> v = c(3.2, 4.1, 1.9)
> v
[1] 3.2 4.1 1.9
> v[2] # access 2nd position of vector
[1] 4.1
> v[3] = 10.4 #update 3rd position of vector
> v
3.2 4.1 10.4

> u = c(1,2,3)
> z = u + v #sum 2 vectors (if size is the same)
> z
[1] 4.2 6.1 13.4

Vector
• Operations, functions and access
> length(z) # function indicating size of vector
[1] 3
> 1:2 # vector with 1 and 2.
[1] 1 2
> z[1:2] #subsetting vector (1st and 2rd pos.)
[1] 4.2 6.1
> z > 6 #logical operator
[1] FALSE TRUE TRUE
> z[z > 6] # return all values greater than 6
[1] 6.1 13.4

Complex Data Structures

Matrix
• Matrix – two dimensional vector / same type
> m = matrix(1:12, 4, 3) # 4 by 3 matrix
> dim(m) # size of matrix
4 3
> m[1,] # show first row of matrix
[1] 1 5 9
> m[3,1] #show element at 3rd row / 1st column
[3]
> m
 [,1] [,2] [,3]
[1,] 1 5 9
[2,] 2 6 10
[3,] 3 7 11
[4,] 4 8 12

Matrix
• Matrix – two dimensional vector / same type
> v1 = c(10,4,10) # a vector with 3 entries
> v2 = c(4,10,2) # another 3 entry vector
> mat = rbind(v1,v2) # join two vectors as a matrix
> mat
 [,1] [,2] [,3]
v1 10 4 10
v2 4 10 2

Matrix
• RStudio also helps visualisation of a matrix

click here!

Matrix

Matrix
• What happens if we have a large matrix?

450.000 lines by 1000 samples?

> m = matrix(1:12, 450000, 1000) # 4 by 3 matrix
> dim(m) # size of matrix
[1] 450000 1000
> m[,1] # show first column of matrix
[1] 1 2 3 4 5 6 …

Matrix
• What happens if we have a large matrix?

450.000 lines by 1000 samples?

• Large matrices use a lot of memory (1.7 GB)!
> remove(m) # remove m from memory

> m = matrix(1:12, 450000, 1000) # 4 by 3 matrix
> dim(m) # size of matrix
[1] 450000 1000
> m[,1] # show first column of matrix
[1] 1 2 3 4 5 6 …

Functions

Functions

• A section of a program that perform a specific task
– Takes values as input parameter and returns some new

value (or performs an operation)

• R defines several types of functions
– math: log, exp, abs, sqrt, min, max, …
– array/matrix manipulation: length, dim, array, rep, …
– Read/write files: read.table, write.table, …

• Can be created by user or defined in contributing
packages (tomorrow!)

Example of Functions
> log2(4)
[1] 2
> m = matrix(1:12, 4, 3) # create a matrix
> dim(m) # size of the data frame
[1] 4 3
> summary(m) # statistics of the matrix columns
 V1 V2 V3
 Min. :1.00 Min. :5.00 Min. : 9.00
 1st Qu.:1.75 1st Qu.:5.75 1st Qu.: 9.75
 Median :2.50 Median :6.50 Median :10.50
 Mean :2.50 Mean :6.50 Mean :10.50
 3rd Qu.:3.25 3rd Qu.:7.25 3rd Qu.:11.25
 Max. :4.00 Max. :8.00 Max. :12.00
> write.table(m,"mydata.txt")
write matrix in a .txt file
> getwd() # current working directory

Functions and help
> help.start() #opens a page with manual, tutorials and
help search
> help("write.table") #show options for write.table

Functions / Multiple Parameters
>help.start() #opens a page with manual, tutorials and
help search
>help("write.table") #show options for write.table

> write.table(data,"mydata.txt",quote=FALSE, sep="-")

data.frame to be saved
file name

use quotes between names
separators between values

Libraries
• In R the primary mechanism for distributing software

(functions) is via packages
• CRAN is the major repository for packages.

> install.packages("packagename") # install a new package

• Bioinformatic packages are available at Bioconductor
package.
> install.packages("BiocManager")

> BiocManager::install(c("packagename")

• Before using functions of a library they need to be opened.
> library("packagename")

Example of library / saving excel table
> install.packages("openxlsx") # installing package
> library("openxlsx") # loading package in memory
> help("openxlsx") # description of package
> m = matrix(1:12, 4, 3) # create a matrix
> write.xlsx(as.data.frame(m),"mydata.xlsx")
write matrix in a .xlsx file
> mydata = read.xlsx("mydata.xlsx") # read the file
and saves in another variable my data
> mydata
 V1 V2 V3
1 1 5 9
2 2 6 10
3 3 7 11
4 4 8 12

Try using openxlsx to load an excel table from yourself!

Exercise 1
- Define a vector to store the amount of fruits and another

one to store their prices.
- There are 5 green apples, 14 red apples, 30 bananas

and 4 melons
- An apple costs 0.5 cents, a banana 1.0 euro, a melon

3 euros
- Use vector operations/functions to calculate what is:
- The total amount of fruits?
- The total number of fruit types?
- The total price of all fruits?

Exercise 2

- Use functions or logical operators to answer the
following questions:
- Which fruit types have more than 5 units?
- Which fruit types you can buy all items with 10

euros?
- Which fruit type has the least amount of units?

Exercise 3

Creating regular numeric sequences is a common
task in statistical computing. You can use the seq
function to create sequences.

1. Read the help page for seq by entering help(seq).
2. Generate a decreasing sequence from 50 to 1,

then another sequence from 1 to 50.
3. Use seq to generate a sequence of the even

integers between one and ten.

Exercise 4

• Create an integer vector that can be used to
subset a vector named vec (see below) such
that it will output the elements of vec in
decreasing order. For the general case, read
the help pages for order and sort.
> vec = c(1.1, 2, 100, 50, 60)

Afternoon Exercise

• Check exercise in https://www.costalab.org/bioinformatics-in-
r-2023/

• See you all after lunch!

Extra material

• More exercises at …
http://www.bioconductor.org/help/course-materials/2010/

BioC2010/First_Steps_With_R_SOLUTIONS.pdf
(pages 1-17)

http://www.bioconductor.org/help/course-materials/2010/BioC2010/First_Steps_With_R_SOLUTIONS.pdf
http://www.bioconductor.org/help/course-materials/2010/BioC2010/First_Steps_With_R_SOLUTIONS.pdf

Inst. for Computational Genomics
• Ivan G. Costa
•Tiago Maie
•Johannes Schoeneich

